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Abstract It is shown that a local MP2 approach can be
conveniently adopted as a first step towards the
post-Hartree–Fock description of crystalline solids. The
relation of a new periodic MP2 code (Cryscor) to a
classical Hartree–Fock program (Crystal) is outlined.
As an illustration, the case of LiH, a prototypical ionic
crystal, is treated in some detail by analyzing the effect
of the perturbative correction on equilibrium geometry,
lattice energy and electron distribution (X-ray structure
factors, directional Compton profiles), with reference to
experimental data.

Keywords Crystalline solids · Local correlation ·
MP2 · Density matrix · Lithium hydride

1 Introduction

Computer codes using one-electron Hamiltonians,
either based on density functional theory (DFT) or on
the Hartree–Fock (HF) approximation, provide nowa-
days efficient techniques for solving the many-electron
problem for periodic systems. The former approach is
by far preferred in applications. This is because HF is
affected by a systematical error related to its neglect
of dynamic correlation between electron motions. Con-
versely, owing to clever formulations of the exchange-
correlation term in the Kohn–Sham Hamiltonian, DFT
provides usually very accurate results as far as geome-
tries and cohesion energies are concerned, at
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comparable or lower cost; the evaluation of energy
derivatives with respect to nuclear coordinates or to
external perturbations is also easier, due to the ab-
sence of non-local terms in the Hamiltonian. On the
other hand, the limitations of DFT are well known. The
most disturbing one, in principle, is the lack of system-
atic rules for improving indefinitely the quality of the
DFT solution. From a practical viewpoint, the fact that
standard DFT cannot describe dispersion interactions
between distant parts of the system [1] makes this ap-
proach unsuitable for many important solid state appli-
cations. An alternative approach is then needed, at least
for calibrating DFT parameterizations.

Molecular quantum chemistry provides an astound-
ing variety of ab initio wave-function-based methods
for evaluating electronic correlation effects; they usually
adopt the HF solution �HF as a reference starting point.
Extending these methodologies from finite to periodic
systems has been the object of a lot of important work in
the past and in recent years (see for instance Ref. [2] for
an extended review). For such efforts to result in an effi-
cient scheme, two conditions must be satisfied: first, that
a good reference HF solution for the crystal is available;
secondly, that the correlation technique may be easily
adapted to periodic systems and its costs scale smoothly
with the size of the repetitive unit.

Computational techniques for the accurate determi-
nation of �HF for simple periodic systems have been
available for almost two decades now, mainly as a re-
sult of work in our group, in collaboration with the
Daresbury laboratory [3,4]. The evolution of those early
techniques has resulted in a powerful computer code,
Crystal, which in its present version [5] is one of the
few existing computational tools capable of providing
not only DFT solutions, but also accurate HF ones for
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a variety of crystalline systems, and is undoubtedly the
best tested among them [6]. Concerning the latter of
the two pre-requisites for setting up an efficient post-
HF computer code for crystals, the local correlation
method in Pulay, Meyer and Saeb’s formulation [7–9],
and implemented in the molecular Molpro code [10],
seems ideally suited. It is particularly convenient for
large molecular systems since it scales linearly with the
molecular size (N), at least asymptotically. Order N
formulations of some of the most popular correlation
techniques have been implemented and shown to per-
form very efficiently: Rayleigh–Schrödinger perturba-
tion techniques in second (MP2) [11] and higher (MP4)
[12] orders, coupled cluster theory confined to singles
and doubles (CCSD) [13] or including triple corrections
[CCSD(T)] [14], etc.

Taking advantage of this favorable situation, a
research project has been started in our laboratory in
collaboration with the group of Professor Schütz (one
of the main Molpro’s authors) at the University of Re-
gensburg, aimed at implementing a new computer code,
Cryscor, for the evaluation of post-HF effects on the
properties of periodic, non-conducting systems. The idea
is to reformulate the local correlation approach for the
case of translational invariance, and to exploit as far as
possible algorithms, technology and knowhow from the
two reference codes, Molpro and Crystal: this objec-
tive is made easier by the fact that both codes adopt a
basis set of atomic orbitals (AO) χα(r), which are in turn
expressed as a linear combination of Gaussian type orbi-
tals (GTO). As a first step in this direction, we have cho-
sen to concentrate on MP2, the lowest level of post-HF
perturbation theory; progress in this direction has been
documented in a preceding paper [2]. It may be ques-
tioned whether the effort required to implement such a
low-order correlation scheme is worthwhile. We think
it is, for different reasons. In the first instance, many
aspects of the machinery (definition of the local ortho-
normal functions, exploitation of translational and point
symmetry, basis set calibration, efficient calculation of
two-electron integrals and so on) can be implemented
and checked at the MP2 level and carried on, almost un-
changed, to higher levels of approximation. Secondly,
MP2 describes rather accurately dispersive interactions,
certainly better (both from a fundamental and a practi-
cal viewpoint) than DFT-based methods [15]. The semi-
empirical “Grimme correction” [16–18] can also be used
for correcting MP2 energies, which has been shown to
improve impressively, at zero cost, the agreement with
experimental correlation energies.

Energy (and related quantities: equilibrium geome-
tries, energy derivatives with respect to external pertur-
bations, etc.) is not the only property that is affected

by correlation effects and that deserves consideration
and comparison with experimental results. In a recent
paper [19] it was argued that determinations of the
one-electron density matrix of crystalline systems,
γ1(r, r′), based on directional Compton profiles (CP)
and X-ray structure factors (XSF), could be useful to
assess the quality of computational techniques which
take electron correlation effects into account. A scheme
was there outlined for evaluating the correlation correc-
tion to the Hartree–Fock one-electron density, starting
from the solution obtained for the periodic system at a
perturbative MPn level. The case of crystalline lithium
hydride was there indicated as specially suitable for this
check, due to the abundance of high quality experimen-
tal data, and to the exceptional simplicity of its electronic
structure.

We have chosen precisely LiH for documenting in
this article some aspects of the present status of the
Cryscor project. In Sect. 2 we first provide a brief re-
sume of the periodic–local MP2 (P-LMP2) technique as
implemented in Cryscor with emphasis given to compu-
tational aspects. The approximate estimate of the
correlation correction to γ HF

1 (r, r′) is also described;
it is shown how the effects of this correction on the
calculated CPs and XSFs can be obtained rather straight-
forwardly, by means of the same routines used in
Crystal for the evaluation of those quantities at a non-
correlated level. The transfer of information from Crys-
tal to Cryscor and vice versa is documented. Section 3
presents the LiH calculations. We first describe the com-
putational choices adopted. Attention is given to those
settings, which dictate the accuracy of the P-LMP2 cor-
rection, and to the approximations adopted in order to
estimate the changes in the density matrix. The results
are discussed with reference to the available experimen-
tal information and to the previous HF studies.

2 Theory and techniques

As anticipated in the introduction, the Pulay, Meyer and
Saebo approach is adopted here [7–9], suitably gener-
alized to periodic systems, and based on a local rep-
resentation of the occupied and virtual HF subspaces.
Functions in the former set are obtained via a uni-
tary transformation of the set of canonical orbitals by
maximizing a pre-defined localization functional. In the
present context, symmetry-adapted Wannier functions
(SAWF) provided by the Crystal program are used
for this purpose [20,21]. The general function of this
orthonormal set is indicated as φi(r) or simply |i 〉. The
virtual subspace is spanned by the non-orthogonal, lin-
early dependent set of the projected atomic orbitals



Theor Chem Acc (2007) 117:781–791 783

(PAO), obtained by applying to the general AO, χα(r),
the projector onto the virtual space: ̂Q = 1̂ − ∑

i |i 〉〈 i|.
The general PAO is indicated as χ̃α(r) or simply |a 〉. In a
periodic context, the indices i(j, k, . . .) and a(b, c, d, . . .),
which identify SAWFs and PAOs, respectively, are in
fact double indices: iI, . . . aA, . . . the first specifying the
shape of the function, and the second the crystal cell to
which it belongs.

The first order perturbative correction to the HF
wavefunction may be written as a combination of con-
travariant doubly excited zero-spin configurations:
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Here, Kij
ab = (i a|j b) is the two-electron “exchange”

integral; Fik and Fac are elements of the Fock opera-
tor in the WF or PAO representation, respectively; Sac
is the overlap between PAOs. Full exploitation of trans-
lational and point symmetry of the crystal permits us to
confine the problem to an irreducible set of SAWF pairs,
(iO; jJ ), of which the former belongs to the zero cell.

An essential notion of local correlation techniques,
whereby the short-range character of dynamic corre-
lation is exploited, is that of domain of any localized
occupied orbital (SAWF, in the present case). Roughly
speaking, each domain comprises the set of atoms which
contribute significantly to the SAWF owing to a Mullik-
en-like criterion and to some pre-selected threshold [22].
A PAO is said to belong to a given domain, if the AO
from which it is generated is associated with an atom
in that domain; otherwise it is “external” to it. The dis-
tance dij between two SAWFs (i, j) is next defined as the
minimum distance between any two atoms in the respec-
tive domains. The “locality Ansatz” is now introduced
according to which amplitudes T ij

ab in Eq. 1 are negligi-
ble, either if the SAWFs i, j are very distant (dij > Dmax),
or if any of the PAOs a, b is external to both SAWF
domains. Due to this Ansatz and to the local character
of the Fock and overlap matrices, the computational cost
asymptotically scales proportionally to the size N of the
irreducible part of the repetitive unit.

In practical crystalline applications, the pre-factor of
such a linear dependence on N is usually much larger
than in standard molecular applications: in fact, because
of the very compact nature of most three-dimensional
periodic structures, huge numbers of two-electron K
integrals must be calculated as a four-index transfor-
mation from the basic analytical integrals over AOs.
A way out of this difficulty can be obtained by a system-
atic use of “density fitting” techniques [23,24], which
reduce the problem to a three-index transformation
of relatively simple integrals. The adaptation of this
approach to periodic systems introduces enormous sav-
ings in the computational effort and is currently imple-
mented in Cryscor [25,26]. For K integrals involving
distant SAWF pairs, multipolar approximations can be
used conveniently, which consist in estimating Kij

ab as the
Coulomb interaction between the two product distribu-
tions, (i×a) and (j×b), each expressed as a combination
of point multipoles [2].

The evaluation of the amplitudes through the annihi-
lation of all residues Rij

ab (see Eq. 2) allows the second
order energy per cell of the periodic system to be esti-
mated according to the formula:
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the prime to the summations meaning that they are con-
fined to sets of indices satisfying the locality Ansatz.
The estimate Eg of the correlation energy proposed by
Grimme [16,17] and based on the consideration that
the MP2 expression overestimates triplet with respect
to singlet excitations differs from the one above in the

substitution of the combination:
(

2Ti0, jJ
d D,c C − Ti0, jJ

c C,d D
)

with:
[

(ag + bg) Ti0, jJ
d D,c C − ag Ti0, jJ

c C,d D
]

. The values ag =
0.333 and bg = 1.2 are adopted here for the Grimme
parameters.

The fact that an expression (Eq. 1) is available for the
first order perturbative correction to the HF wavefunc-
tion suggests that estimates can be obtained of changes
induced by correlation effects on the electron distribu-
tion. The one-electron density matrix γ1(r, r′) contains a
lot of information in this respect. It was pointed out in
Ref. [19] that this fact is particularly relevant for peri-
odic systems, where high quality information about γ1
can be obtained from experimental determinations of
X-ray structure factors and directional Compton profiles
[27]. It is however not possible to obtain directly γ1 as
the expectation value of the related operator P̂r,r′

1 over
α(�HF + �(1)) (α being a normalization factor): this is
because the resulting expression is not size-consistent,
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and for an infinite system it would provide γ1(r, r′) =
γ HF

1 (r; r′). In order to bypass this difficulty, a locally cor-
related wavefunction is defined, as obtained by adding to
the HF solution only excitations where one of the two
SAWFs is in the zero cell, but using for them the ampli-
tudes from the P-LMP2 calculation. It can be viewed in a
sense as the result of an “embedding” calculation, where
electrons are allowed to correlate their motions in the
zero cell and its neighborhood but are imposed to stay in
their HF state far from it. There is more than that, how-
ever: for instance, the amplitudes include the effect of
dispersive interactions up to infinite distance. The local
MP2 correction to the HF one-density γ ′MP2

loc (r; r′) can
be obtained from there, which coincides with that of the
individual molecule in a molecular crystal in the limit of
infinite values of the lattice parameters. Finally, a size-
consistent periodic expression of the MP2 correction to
the HF one-density can be worked out, which is conve-
niently expressed in terms of the AOs (see Ref. [19] for
details):

γ ′MP2
(r; r′) =

∑

µM,νN
P′MP2,AO

µO;νN�M χµ(r − RM)

×χν(r′ − RN ). (4)

It is thus possible to calculate the corrections to the
observable quantities of interest (electron density,
momentum density, Compton profiles, autocorrelation
function, X-ray structure factor, etc.) by simply feeding
the corresponding subroutines of Crystal with P′MP2,AO

instead of PHF,AO.
The general scheme of the exchange of information

between Crystal and Cryscor is outlined in Fig. 1. From
a very concise information on the geometry of the sys-
tem, a description of the basis set adopted, and from
a few input parameters that determine the accuracy of
the computation, Crystal performs a complete symme-
try analysis and calculates the SCF-HF (or DFT) solu-
tion. All geometry and symmetry information, the Fock
and density matrix, the canonical eigenvalues and ei-
genvectors are stored on disk for use by the Properties
code, which is an essential part of the Crystal suite of
programs. Properties calculates on request a number of
quantities of interest: among these, the SAWFs can be
obtained and stored on a disk, which are an essential
input requirement for Cryscor. The latter program also
gets from Crystal the basis set, the Fock and HF den-
sity matrix in the AO representation and the geometri-
cal characterization of the system. After solving the MP2
equations, Cryscor may determine the P′MP2,AO matrix.
This is fed to the Properties program in the same for-
mat as PHF,AO (dashed arrows in Fig. 1), so allowing the

Fig. 1 Scheme of the transfer of information between Crystal
and Cryscor. Continuous and dashed arrows convey HF and MP2
information, respectively

re-calculation of all those quantities which only depend
on the one-electron density matrix.

3 An MP2 study of lithium hydride

3.1 Computational aspects

In the rest of this paper, we present computations
concerning crystalline LiH in order to illustrate some
aspects of the present capabilities of the Crystal–Cry-
scor suite of codes. This system has attracted widespread
attention from experimentalists and theoreticians (see
the comprehensive review by Islam [28] and the recent
DFT study by Lebègue et al. [29]) because it may be
considered the prototype of extreme ionic bonding, and
because it is exceedingly simple: two nuclei and four
electrons per unit cell, and a highly symmetric, face-
centered cubic (fcc) structure. In particular, old but very
accurate X-ray structure factors [30], and high qual-
ity CP data, both average [31] and directional [32,33],
have been available since long. Over 20 years ago, these
data were compared with the theoretical HF results
obtained with the Crystal program [34,35], or follow-
ing the Adams–Gilbert–Kunz prescription [35–38], and
the agreement was generally quite satisfactory. Ample
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reference will be made in the following to our compre-
hensive HF study of that system [34].

The variationally optimized, extended basis set (EBS)
adopted there is the reference one for the present work
and will be indicated here as A. It comprises three s and
one p shells on H, and two s and one p shells on Li; they
are all single GTFs, except for the two 1s AOs resulting
from the contraction of five and six GTFs for H and
Li, respectively. The set A has been complemented with
single-GTF d shells either on H alone (set B) or both
on H and Li (set C). As shown below, the three sets
provide almost equivalent HF results, while differences
are evident at a correlated level. The use of more ex-
tended basis sets would create problems in the HF-SCF
part due to the risk of quasi-linear-dependence among
the Bloch functions, with no advantage on the quality of
the HF solution. Work is in progress aimed at allowing
the use of a “dual” basis set—the former for defining the
HF occupied manifold, the latter including additional
functions to improve the description of the virtual HF
space. In all cases (HF, P-LMP2, “Grimme”), the cal-
culated cohesive energies Ecoh were corrected for the
basis set superposition error (BSSE) following the stan-
dard counterpoise technique [39], and the equilibrium
geometries were calculated using the BSSE-corrected
Ecoh values.

Standard tolerances were adopted for the HF calcu-
lations, both concerning truncation of lattice sums and
k-space sampling. In all cases the P-LMP2 treatment was
restricted to valence electrons, as is usual in this kind
of calculations: the correlation effects between the core
electrons are not likely to be affected significantly by the
participation of atoms in molecular or crystalline struc-
tures, and in any case, the variational basis set adopted
is not fit to describe such effects. As a consequence,
we are left here with two correlated electrons per cell,
which means that just one SAWF type φJ is determined
by the LOCALI part of the Crystal code. φJ is almost
the same for the three basis sets because it only depends
on the HF solution. As expected, it is very well localized
about the H nucleus (its Mulliken population on H var-
ies from 1.01 to 1.02 for the different basis sets) and is
much more compact than the HF solution of the free hy-
dride ion (the spatial extension [∫ dr |φ(r)|2 r2] 1

2 of the
two distributions about their center is 1.06 and 1.59 Å,
respectively).

Let us now provide some details on the setting of the
computational parameters for the P-LMP2 calculations.
First, in order to apply the locality Ansatz, the SAWF
domain must be defined. By default, we have assigned
to each SAWF a 19-atom domain comprising the H− ion
on which it is centered, its 6 nearest neighbors Li+ ions
and the 12 second-neighbor H− ions. A “small-domain”

setting, which includes only the first seven ions, and a
“minimal-domain” setting, confined to the central H−
ion, were also considered for purposes of comparison.
The value of Dmax (distance between SAWFs beyond
which pair interactions are disregarded) has been typi-
cally set to 12 Å. Extrapolation of the results to infinite
distance (Dmax = ∞) is possible, as shown below. If all
the involved K integrals are calculated exactly, the corre-
sponding step becomes the true bottleneck of the whole
procedure. The time required is critically dependent on
the threshold adopted for truncating the tails of SAWFs
and PAOs: in the expansion of those functions as a lin-
ear combination of AOs, all terms are disregarded for
which the absolute value of the expansion coefficient is
less than a preselected value tcoe. With the choice here
adopted, tcoe = 0.001, which provides rather accurate
results (see for details Ref. [2]), and with Dmax = 12 Å,
the time required for a single energy point with basis
set A on a 3 GHz PC [Intel Xeon (TM)] is approxi-
mately 140 h (5.8d). The multipolar technique can how-
ever be used safely when dij > 8 Å, which reduces the
time to 55 h. Finally, if the density fitting approxima-
tion is used for closeby pairs, the cost is reduced to
30 min (52 min for basis set C) with no essential loss of
accuracy.

The set of detors which defines the locally correlated
wavefunction (see Sect. 2) comprises all bi-excited con-
figurations �loc = {O; G | a; b}, where the WF in G either
coincides with that in O or in one of the 12 lattice vec-
tors Gi of the star closest to the origin; a (and b) designs
the general local orbital resulting from orthonormaliza-
tion of the set of all PAOs on the 19 atoms closest to
the origin, after eliminating the quasi-linear dependent
combinations of PAOs (those corresponding to eigen-
values of the overlap matrix less than 0.001). The trans-
formations described in Ref. [19] were then performed,
and the elements of the matrix P′MP2,AO (see Eq. 4)
were determined, so allowing us to estimate the effects
of the correlation correction on various quantities of
interest.

3.2 Results and discussion

The results reported in Table 1 and Fig. 2 show the influ-
ence of the approximation scheme and the computa-
tional setting adopted on the cohesive energy of LiH,
calculated with respect to the free ions treated in each
case in the same approximation, and on the equilib-
rium value of the lattice parameter. In spite of the much
better tolerances and of the more adequate treatment of
the Madelung potential, the present HF results obtained
with the reference set A are very close to those reported
more than 20 years ago [34] (total energy −0.806187
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Table 1 Calculated cohesive energy (Ha), lattice parameter (Å) and bulk modulus (GPa) of LiH

Basis set HF HF + MP2 HF + Grimme

Ecoh a0 B0 Ecoh a0 B0 Ecoh a0 B0

A 0.3423 4.126 27.7 0.3463 4.064 32.2 0.3444 4.086 31.0
B 0.3423 4.124 27.8 0.3477 4.040 32.3 0.3458 4.062 30.4
C 0.3425 4.121 28.3 0.3482 4.026 34.4 0.3462 4.055 32.6

Cohesive energies are corrected for the respective BSSE. The different basis sets and computational methods are described in the text.
The experimental values (see text) are Ecoh = 0.3469 Ha, a0 = 4.083 Å, B0 = 32.1 GPa
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Fig. 2 Cohesive energy dependence on lattice parameter for
different approximations (continuous thin lines HF; continuous
thick lines HF+MP2; dashed lines HF+Grimme) and different ba-
sis sets (A, B, C, as indicated). The thick cross indicates the exper-
imental values of cohesive energy and lattice parameter. For the
HF+MP2-A case, the calculated points are marked to show the
quality of the fitting curves

and −0.806289 Ha, respectively); they are not changed
very much by the addition of the d functions on the
two atomic species. The HF cohesive energy per cell
is the same in all cases within 0.2 mHa, and is consis-
tently lower than the experimental value [40] by about
4.3 mHa (∼11 KJ mol−1); the lattice parameter is also
hardly affected and is larger than that observed by about
0.04 Å (∼1%). The basis set choice affects to a larger

extent the MP2 results, as expected. It is apparent that
convergence with respect to basis set quality has not yet
been reached: work, to allow the use of better basis sets,
is in progress, as stated in Sect. 3.1. The MP2 cohesive
energy is larger than the HF one by 4.2–5.9 mHa, so
overcorrecting the estimated correlation error. The cal-
culated lattice parameter becomes shorter than the HF
one by 0.06–0.08 Å, again exaggerating the correction.
For both quantities, “better” basis sets provide larger
MP2 corrections. Concerning the bulk modulus, quite
recent and accurate volume versus pressure measure-
ments for LiD at 300 K by Besson et al. [41], fitted to a
first-order Murnaghan equation of state [42], give B0 =
32.1 ± 0.3 GPa. The same equation has been used for
fitting the calculated data, and the results are reported
in Table 2. The HF estimate is below the experimental
value, probably because the calculated equilibrium in-
terionic distance is too long. The MP2 correction gives
slightly too large B0 values. The values calculated with
the Grimme formula for the three quantities are inter-
mediate between the HF and MP2 results though closer
to the latter; in general, this correction appears to pro-
vide a better agreement with the experiment.

It has however been pointed out by several authors
that in crystalline structures composed of light atoms
like LiH the calculated values of lattice parameter and
bulk modulus should be corrected for zero point
vibrations: the latter contribute in fact a volume-depen-
dent term to the energy, which can be determined from
the knowledge of the phonon dispersion as a function of

Table 2 Intra-SAWF correlation energy (EMP2
O ) and Lennard–Jones parameter (C6) as a function of various computational settings.

Basis set A B C

Domain size Standard Small Minimal Standard Small Minimal Standard Small Minimal

EMP2
O −0.02186 −0.021681 −0.02151 −0.02390 −0.02367 −0.02345 −0.02403 −0.02379 −0.02345

(% of E2) (76.6) (79.6) (84.0) (76.5) (79.4) (83.5) (75.5) (78.2) (83.2)

C6 0.303 0.194 0.146 0.308 0.195 0.147 0.309 0.196 0.147

The percentage contribution of EMP2
O to the total MP2 energy per cell, E2 is also indicated. As explained in the text, standard, small and

minimal SAWF domains comprise 19, 7 and 1 atom, respectively. EMP2
O is given in Ha, C6 in Ha Å−6
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volume: EZP(V) = 1/2
∑

i,q h̄ωi(q, V). In order to esti-
mate this zero-point (ZP) correction, Lebègue et al. [29]
employed the EZP dependence on V obtained theo-
retically for LiH and LiD by Roma et al. [43] using
density functional perturbation theory in a local den-
sity approximation and taking anharmonic effects into
account. We have followed the same criterion for cal-
culating the effect of the ZP correction on the results
obtained with the C basis set. The corrected estimates
of the lattice parameter (aZP

0 /Å) and of the bulk modulus
(BZP

0 /GPa) of LiH for the three computational methods
are: 4.22 and 23.0 (HF); 4.12 and 27.0 (HF+MP2); 4.16
and 25.0 (HF+Grimme), respectively. The same tech-
nique cannot be applied to LiD (for which the best bulk
modulus measurements are available [41]) because the
corresponding data are not explicitly provided by Roma
et al. [43]. However, from a comparison of the ZP cor-
rection to the bulk modulus of LiH and LiD reported by
those authors, the three BZP

0 values just quoted above
for LiH can be estimated to be, in the LiD case: 24.1,
28.5, 26.5 GPa, respectively.

These results show that ZP corrections are important
for crystalline LiH and LiD, and they seem to bring the
MP2 results in closer agreement with the experiment.

The MP2 energy per cell, E2, can be usefully parti-
tioned into “pair interaction energies” EMP2

i,jJ , by sum-
ming all the terms in Eq. 3 associated with excitations
from a given (i0, jJ ) SAWF pair in curly brackets.
A parallel expression is obtained for Eg

i,jJ . This par-
tition allows us to obtain more detailed information on
the various contributions to the correlation energy. In
the present case, with just one SAWF per cell, the indi-
ces i and j can be dropped.

Table 2 reports the values of the only intra-SAWF
contribution, EMP2

O , for different computational settings.
It is seen that the correlation between the two electrons
in the same hydride ion represents in all cases more than
three-quarters of the whole E2. The percentage becomes
larger with decreasing domain size, while it does not vary
much with the basis set.

If the locality Ansatz holds true, inter-SAWF pair
interactions must go rapidly to zero when the distance
dJ = |RJ | between their centers becomes large.
Figure 3 reports a log–log plot of EMP2

J versus dJ for
three different choices of the domain size. As expected, a
very good Lennard–Jones-like −C6(dJ )−6 dependence
of the pair interaction energy on distance is observed.
Notice that points from calculations with different lat-
tice parameters fall on the same straight line. The results
of Fig. 3 are obtained with basis set A, but those for the
two other basis sets are very similar. Table 2 reports
the best fit values of C6 as resulting from the avail-
able data in the interval 6 Å < dJ < 12 Å. A marked
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Fig. 3 Log–Log plot of the pair interaction energy (EMP2
J /Ha)

versus the distance between the centers of the two SAWFs (dJ /Å)
for basis set A and three domain sizes: standard (19 atoms, circles),
small (7 atoms, triangles) and minimal (1 atom, crosses). The three
straight lines are best fit lines with slope -6

dependence from domain size is confirmed, while the
basis set effects are comparatively much smaller. These
C6 values can be compared to the experimental ones
for He (0.036), Ne (0.193) and Ar (2.39), in the same
units. Once C6 is known, the contribution �E(dmax)

to the MP2 energy per cell of dispersive forces from
all pairs at distances dJ > dmax is easily calculated:
�E(dmax) = −4πC6/(3Vcell) × (dmax)

−3. By substitut-
ing values, this residual contribution can be estimated
to be about −50 µ Hartree when dmax = 12 Å. The pro-
cedure just outlined is easily generalized to the case
where different SAWFs are present in each cell and
permits extrapolation to an infinite distance. While the
contribution from very distant pairs to the cohesion en-
ergy is negligible in the present case, it may become
important in the presence of very polarizable ions or
molecules.

The (valence-only) MP2 correction to the one-den-
sity in the AO representation, P′MP2,AO

µO;νN (see Eq. 4) was
calculated as described in the previous section. It per-
mits us to evaluate the redistribution of electrons due to
correlation effects. A first indication is provided by the
Mulliken analysis of the electronic populations reported
in Table 3. With respect to the HF approximation, p and
d AOs play a more important role in both species after
the MP2 correction, and the system becomes slightly less
ionic. This is mainly due to a decrease of the s popula-
tion on H; closer analysis shows that it is only the most
diffuse s AO on H which is depopulated.

Figure 4 reports the MP2 correction to the charge
density along the connecting line between two nearest
H atoms and along the H–Li line. It confirms that, with
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Table 3 Mulliken populations on atoms and shell types for the different types of computation

Basis set Methods H Li

Total s p d Total s p d

A HF 1.982 1.969 0.013 – 2.018 1.987 0.031 –
HF+MP2 1.977 1.944 0.033 – 2.023 1.988 0.035 –

B HF 1.981 1.969 0.012 0.000 2.019 1.987 0.032 –
HF+MP2 1.978 1.944 0.033 0.001 2.022 1.988 0.034 –

C HF 1.979 1.966 0.013 0.000 2.021 1.986 0.033 0.002
HF+MP2 1.975 1.936 0.038 0.001 2.025 1.987 0.035 0.003
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Fig. 4 Profile of the HF density in |e|/Bohr3 [ρHF(z), continuous
lines], and of the correcting MP2 density multiplied by a factor 10
[ρ′MP2

(z): dashed lines, basis set A; dot–dash lines, basis set C].
The plot above is along a line through the H nuclei in the (110)
direction; the plot below is along the line connecting H and Li
nuclei in the (100) direction

respect to the HF solution, electrons come slightly closer
to the nuclei, as expected, and that there is a small trans-
fer of electrons from H to Li (note the different scales
used for the HF density and the MP2 correction). All
other effects, including the role of d AOs, are not detect-
able in these plots.

In order to assess the quality of the calculated charge
density, it is convenient to refer to the coefficients of its
Fourier transform and compare them with the exper-
imental XSF data. Table 4 reports the results of such
an analysis; the calculated data shown there are ob-
tained with basis set C but the following discussion has a
general character, because the basis set effects are com-
paratively negligible. The columns “HF” and “HF +
MP2” report the Fourier coefficients Fcalc

hkl of ρHF(r)
and ρHF(r) + ρ′MP2

(r), respectively. It is noted imme-
diately that the (0 0 0) coefficient in the latter case dif-
fers from the exact value of four (number of electrons
per cell), though by only 0.0025%. This is due to a loss
of orthonormality following the periodization of the lo-
cally correlated wavefunction (see Ref. [19] for details),
but has no important consequence on the other Fou-
rier coefficients. We next observe that the MP2 correc-
tion affects only marginally the HF results (the largest
contribution is ≈0.005 for the (1 1 1) reflexion), and
the correction may be either positive or negative. As
concerns experimental determinations, we shall refer
to the room temperature data by Calder et al. [30] re-
ported in the last column of Table 4: after more than
40 years, this set of 21 XSFs for LiH resulting from
very accurate measurements and thoroughly discussed
still seems to represent the best available reference. To
make comparisons possible, the calculated data must
be corrected for thermal motion by applying a Debye–
Waller correction separately for electrons associated
with the two ionic species. We have simply attributed
core band electrons to Li, valence band electrons to the
hydride ion. The Debye–Waller factors BH and BLi were
optimized in each case so as to minimize the “agree-
ment factor” R = ∑

hkl |f obs
hkl − f calc

hkl |/∑

hkl |f obs
hkl |. The

best fit values resulted BH = 1.56 Å2, and BLi = 0.99
for both HF and HF+MP2 data, corresponding to R val-
ues of 0.01933 and 0.01910, respectively. Using instead
the values suggested by Calder et al. [30]: BH = 1.80,
BLi = 1.01 Å2, led to poorer agreement, R = 0.022 in
the two cases. Much worse results were obtained when
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Table 4 Comparison between calculated and observed X-ray structure factors (XSF)

h k l HF HF + MP2 HF(t) HF + MP2(t) Observed

0 0 0 4.00000 3.99902 4.00000 3.99902 4.000
1 1 1 1.05190 1.05631 1.02293 1.02704 1.086 ± 0.002
2 0 0 2.15460 2.15299 2.01674 2.01527 2.032 ± 0.003
2 2 0 1.61270 1.61088 1.42202 1.42050 1.454 ± 0.004
3 1 1 1.08820 1.09206 0.93760 0.94059 0.960 ± 0.004
2 2 2 1.32070 1.31901 1.09773 1.09645 1.096 ± 0.002
4 0 0 1.12220 1.12016 0.87911 0.87769 0.888 ± 0.002
3 3 1 0.86778 0.86893 0.66449 0.66523 0.671 ± 0.005
4 2 0 0.96878 0.96751 0.71560 0.71478 0.738 ± 0.002
4 2 2 0.84846 0.84783 0.59092 0.59056 0.600 ± 0.003
3 3 3 0.69585 0.69568 0.47376 0.47365 0.472 ± 0.006
5 1 1 0.69619 0.69617 0.47393 0.47392 0.474 ± 0.004
4 4 0 0.67117 0.67152 0.41557 0.41572 0.414 ± 0.003
5 3 1 0.56856 0.56796 0.34426 0.34397 0.354 ± 0.001
4 4 2 0.60380 0.60443 0.35252 0.35278 0.349 ± 0.001
6 0 0 0.60388 0.60483 0.35254 0.35295 0.359 ± 0.002
6 2 0 0.54667 0.54771 0.30093 0.30134 0.299 ± 0.001
5 3 3 0.47301 0.47221 0.25475 0.25445 0.248 ± 0.002
6 2 2 0.49761 0.49870 0.25831 0.25869 0.250 ± 0.001
4 4 4 0.45514 0.45615 0.22278 0.22310 0.209 ± 0.002
5 5 1 0.39985 0.39907 0.19158 0.19132 0.182 ± 0.003
7 1 1 0.39985 0.39920 0.19158 0.19136 0.179 ± 0.001

The columns “HF” and “HF+MP2” are referred to the respective calculations with basis set C, and no thermal corrections. The columns
“HF(t)” and “HF+MP2(t)” report the same XSFs corrected for thermal motion, using the best-fit Debye–Waller factors BH = 1.56 Å2,
and BLi = 0.99 Å2. The experimental XSFs by Calder et al. [30] are reported in the last column. See text for discussion

adopting for the Debye–Waller factors the very accurate
experimental determinations by Vidal and Vidal-Valat
[44] (BH = 1.715, BLi = 1.195 Å2), giving R = 0.062.
The value of BLi plays a critical role here by providing
too small f values for long reciprocal lattice vectors when
it exceeds 1 Å2. Closer inspection reveals that the ineli-
minable source of the discrepancy lies in the low-index
XSFs, where the thermal correction is lowest. In partic-
ular the observed value of the (1 1 1) XSF exceeds the
calculated one by about 0.06; the MP2 correction appar-
ently accounts for only a tenth of the difference, and it
is hard to believe that this is due to inadequate account
of correlation effects. It is more likely that the assump-
tion adopted for the thermal correction, implying that
the electrons associated to each ion follow rigidly the
nuclear motion is hardly applicable in the present case
where the motion of ions is relatively large due to their
small mass.

Let us finally make some considerations on the
effect of correlation corrections on directional CPs and
derived quantities. Of particular interest are the auto-
correlation functions B[ijk](r), the Fourier transform of
the corresponding directional CPs, since the experimen-
tal error has shown to affect them as a damping fac-
tor D(r) = exp(−β2r2), where β is proportional to the
resolution in momentum, space. Figure 5 compares the
calculated B function along three different directions to

the experimental determination of Ref. [33]. These data
confirm first of all the very good agreement between
HF and experimental results. It may be questioned
whether the residual discrepancies can be attributed
to inadequacy of the theoretical (uncorrelated) model
or are within experimental errors and numerical accu-
racies in the computation. This is not clear from the
data reported in Fig. 5, which shows that MP2 cor-
rections are of minor importance (note that they are
multiplied by a factor ten to make them more visible),
exhibit some dependence on basis set, and do not intro-
duce significant improvements in the HF results. This
same problem was addressed by Bellaiche and Kunc [45]
who performed all-electron calculations for LiH using
a plane-wave basis set, and adopting either a local-den-
sity Kohn–Sham Hamiltonian or the HF approximation;
the calculated CPs were compared with experimental
ones from high-resolution X-ray scattering measure-
ments [46]. The agreement was significantly better with
HF than with density functional results, which those au-
thors attributed to the fact that HF describes exactly
the exchange interaction, while in the other case it is
taken into account only approximately. Their general
conclusion is that “the effect of the electronic correla-
tion on the CPs in LiH is extremely weak and, for all
practical purposes, negligible”. It is probable that also
as regards electron distribution in momentum space a
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Fig. 5 Calculated autocorrelation function B[ijk](r) along differ-
ent directions, as indicated, compared to the experimental deter-
mination by Weyrich and Asthalter [33]. All data are corrected
with the experimental damping factor D(r). Dotted lines Bexp; con-
tinuous lines BHF; dashed lines B′MP2 (MP2 correction to the HF
data, calculated with the A basis and multiplied by a factor 10);
dot–dash lines the same with basis set C

significant role is played by the coupling of nuclear and
electronic motions which is totally neglected in the
present treatment.

4 Conclusions and prospects

Standard, general-purpose tools for the evaluation of
electron correlation effects in crystals using ab initio
post-HF methods can represent a useful complement
to approaches based on DFT. To implement one such
tool is not a trivial task, even if profit can be taken of
highly efficient and well tested techniques in current use
in molecular quantum chemistry, notably those based on
the Locality Ansatz. Crystalline systems present a lot of
peculiarities calling for the development of specific algo-
rithms and for the accurate calibration of the computa-
tional parameters in order to achieve a satisfactory level
of accuracy and efficiency. Among the special require-
ments we can cite: basis sets adequate to represent the
virtual HF manifold while avoiding the risks of quasi-
linear dependence; the efficient exploitation of transla-
tional and point symmetry; the use of reciprocal space
techniques; the correct handling of dispersive interac-
tions up to infinite distance; the size-consistent descrip-
tion of the density matrix.

In the present work we have described a computer
code for periodic systems (Cryscor) which corrects to
second order of perturbation theory the HF solution
provided by the Crystal code, using a local correla-
tion method similar to that implemented in the Molpro
molecular code. The simple case of LiH has been used
to document the present capabilities of this approach. It
has been shown that good quality computations can be
performed at reasonable costs, the main residual prob-
lem being that of reaching convergence with respect
to basis set size. The correlation correction brings the
description of some fundamental quantities such as lat-
tice parameter, cohesive energy, bulk modulus closer to
the experiment with respect to HF. The use of the Grim-
me correction has also been tried, but its usefulness
has not yet been proved conclusively. The calculated
data concerning the correlated electron distribution (for
example, the contraction of the two ions) may also indi-
cate that the MP2 solution is closer to reality than the HF
one. However, due to uncertainties affecting the avail-
able experimental data (CPs, XSFs) and to the effects
of nuclear motion (which is particularly important with
the light atoms involved in the present case and is not
adequately taken into account) no definite evidence was
produced in this respect. New and better experimental
data could be very useful; other simple systems with
heavier atoms, perhaps MgO or silicon, might be pref-
erable to LiH in order to bring effects of pure electronic
correlation to the foreground.

On the theoretical side, the extension to more
advanced treatments of the correlation problem in crys-
tals is mandatory; while this task does not present
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principal difficulties, it surely requires painstaking and
clever work in order to result in an efficient code which
can be used to solve problems of real interest. In the
meantime, much progress can be achieved and quite a
lot of useful experience can be gained even within the
MP2 approximation. Work in both directions is being
currently carried on.
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